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ABSTRACT 

A system consisting of a l inear element G(s)  and a time-varying gain n( . )  

is considered. 

the sector[O, k1 (i. e. , f o r  n(t)= I ,  0 5 I 5 k). 
is  stable for  all n(- ) i n  that sector satisfying 

It i s  assumed that this system is stable f o r  all constant gains i n  1 

It i s  then shown that the system 

for some K > . 0 and all t > 0. 

Here  u i s  a constant determined by an equation involving (inversely) the 

derivative of the phase function A r g  {G(iw) t l/k} . The proof follows what 

are by now established lines in employing a "multiplier" operator.  However 

a method is used to eliminate any "multiplier" dependence f rom the final r e -  

sults, so that these resu l t s  a r e  explicit and geometric. 
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1. INTRODUCTION 

Many of the ear ly  "frequency domain" stability c r i te r ia  afforded simple 

geometric interpretations. 

plot of a Nyquist curve and i t s  position with respect to  some other line or geo- 

met r ic  figure.  

Criterion". 1 

These cr i ter ia  assured  stability on the basis of the 
- *  

(Consider for instance the I1Popov Criterion' '  or  the "Circle 

Some of the m o r e  recent work has resulted in theorems of a l e s s  geometric 

character .  

invariant element G ( s )  and time-varying element n(. ),O I n(. ) I k ( see  Figure 1 )  
n 

and concluded that i f  there  exists some Z(s) of the fo rm Z ( s )  = .Z 
1= 1 

ai I 0 and pi 2 IJ and with Z ( s )  

would be stable for all n(. ) satisfying h( t ) /n( t )  I 2u (1 - n(t)/k) for t 2 0. 

Brockett and Forys  [ 11 considered a feedback sys tem with t ime-  

ai/ (s  t pi) with 
*l [G(s) t l /k ]  positive real ,  then the sys tem 

In the context of integral  equations, a result  of Falb and Zames [2] showed 
that for a sys tem consisting of a convolution operator E and a monotone con- 

2 l inearity f ( -  ) satisfying 0 I af(a) I ka , stability can be proven if there  exists a n  

operator Z_ : L2 [0, Q) ) --L2[0, Q) ) defined by (Zx) (t) = x(t) t I,' z l ( t  - T )  X(T) dT 
where 

and 

R e  { [ Z ( i w )  t a i w ]  [G(io) + ;])t 6 >. 0 ' 

for some CY > 0 and all r ea l  a. 

/-linear time 
invariant 

* y w  

time- varying gain 

Both of the preceding results de- 

pend on the existence of a "multiplier" 

operator which, when combined with 
[ G ( s )  t l /k ] ,  yields a positive operator. 

This idea,  expressed a s  a factorization 

property of G ( s ) ,  first appeared in 

Zames [3a l .  

"multiplier" approach as portrayed in 

[ 11 , [21 , and [ 3al , i s  limited by the 

absence of any explicit method for 

finding suitable "multipliers". 

I 
1 The usefulness of the 

F igure  1. A Feedback System 
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In Freedman and Zames [4] the stability of a system involving a linear tirne- 

invariant element G ( s )  and a time-varying gain n(* ) w a s  considered (as in  Figure 

1).  The method of proof in [4'3 involved introduction of a tfmultiplierr '  much as in  

[Z] above. However, a constructive process  was developed which allowed for  

removal of this "multiplier" f rom the final results, so  that these resul ts  were 

geometric in  nature. 

It is this author 's  contention that 143 contains the core  of a procedure which 

can be used to initiate a program aimed at returning more  closely to  the geometric 

character of the ear l ie r  resul ts .  More  explicitly it is felt that the ideas in [4] can 

be utilized to remove the "multiplier" f rom many of the more  recent stability 

resul ts ,  thus yielding cr i ter ia  depending only on G ( s )  and its properties. 

For the purpose of this paper the resul t  of Brockett and Forys  [ l ]  mentioned 

above was considered and a criterion was developed which is f r ee  f rom dependence 

on any "multiplier". 

To describe this cri terion more fully consider the feedback system repre-  

sented by Figure 1, and assume it i s  stable for all constant gains in  sector [O,k] . 
r .L 

Arg {G(iw) t l /k) . 
stable i f  there is a K > 0 such that 

Then by the cri terion to be 

. .  

Denote by Q (a) the phase function 

presented here the system will be 

i 2r I dt. - 2u I 5 K 

fo r  a11 t > 0 (and so more  weakly i f  h(t)/n(t) S 2u (1 - n(t)/k) o r  A(t)/n(t) 1 

2u (1 - n(t) /k))  where u is  determined by an equation involving (see  Figure 2): 

1. 

2. 

3. 

The magnitude of.the closest approach of Q (0) to  f IT. 

A "cutoff frequency Wyt'  i. e. a frequency after which the values of Q (0) 

are of no importance in this theory 

The magnitude of the square integral of the derivative of @ (a) over 
- 

One sees  therefore that not only the geometric set  N = {G(iw) I - 00 < a<,} 
comes into play here ,  but a l so  in some sense the Itangulart1 ra te  at which this set  

is t r aced  out as o varies  (as represented by @'(u)) .  In Fact it will appear that 
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Figure 2. Plot of the Phase Function ( w )  

such ra tes  a r e  closely related to  the existence and properties of certain 

"multipliers . 
. The crucial  lemma on which the theory presented here  res t s  i s  Lemma 1, 

section 4, which shows that a ~~mul t ip l i e r l '  operator with any prescribed phase 

function can be constructed provided only that i ts  phase function and i t s  deriva- 

tive satisfy suitable integrability conditions. 

2, section 4), and the reader  is referred to that paper for the proof. However, 

a short  sketch of that proof i s  included here. 

This result  appeared in [4] ( L e m a  
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2. THE MAIN PROBLEM AND ITS SOLUTION 

DEFINITION: 

valued measurable  functions x(- ) on [0, rn ) with the property that 

Let L [0, rn ), where p = 1, 2 . . . 0 0 ,  be the l inear space of real 
P 

o r  x(- ) is essentially bounded i f  p = GO. Let L2 [ 0 ,  rn ) be normed with the norm 

The spaces  L ( - 0 0 , 0 0  ) on the interval ( - "  , ) a r e  similarly defined. 
P 

The definition of the extended space L2e i s  introduced next. (Fo r  a more  

complete discussion of such spaces, s ee  [ 3b] . ) 
DEFl NIT1 ON: 

x(* ) on [0, rn ) satisfying 

Let L2e be the space of those real-valued measurable  functions 

IT lx(t) l 2  dt  < 0~ for all T - > 0. 
0 

2.1 FEEDBACK EQUATIONS AND STABILITY 

The feedback system of Figure 1 will be represented for  all t z 0 by the 

integral  equation 
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o r ,  alternatively the pair: 

, in which it is assumed that: 

1. x(*)  is in  L2 [0,  m). 

effects of an  input and of possible non-zero initial conditions. ) 

(The funct ionx(*)  represents  the combined 

3. n(*.) is  a real-valued function, absolutely continuous on [ 0,  m ). 

(Since n(* ) i s  absolutely continuous, i t s  derivative A(* ) exists 

almost everywhere, and 

Jbh( t )  dt . .  
n(b) - n(a) = 

a 

for  any non-negative rea l  a and b (See Hobson [ 5 ]  , Sect. 406, 

pp. 592-593. ) 

4. e ( - )  (and also y(. ) )  i s  in LZe (i. e . ,  existence of solutions in L2e 

fo r  L2[ 0,a)  - inputs i s  being assumed. * 

DEFINITION: Feedback system 1 will be termed L2 - stable if for any pair  0 (X(* 1, e ( = ) )  for  which (1) (o r  (2)) and the related assumptions 1, 2 ,  3 and 4 hold, 

then e ( = )  is in  L2[0,m),  with 1 1  e ( * ) I I <  const. 1 1  x(*)ll . - 
- 

* 
The problem of existence of Lze solutions will not be discussed in this paper,  
except t o  say that such questions may be settled favorably by various minor 
additional hypothe s e s. 
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This  notion of stability is natural i n  the setting of integral  equations. In the 

context of differential equations it implies asymptotic stability (lim y(t)  = 0) 

and with additional minor assumptions can a l so  be used to  show bounded-input, 
t-a, 

bounded - output stability. 

2.2 THE M A I N  STABILITY THEOREM 

This section contains the main st 

remarks  will provide the setting. 

DER NIT1 ON: F o r  any k > 0 ,  l e t  

bility resul t  , A few defi itions and 

I Wk = { f ( . ) c  L l [ O , m ) l  F ( i w )  + f  # O  for  - m <  o < o o  and a l l I ,  0 < 1  < k 

where F(s),  the Laplace t ransform of f ( *  ), is the complex-valued function with 

domain { s I Re{s} ,> 0) defined, as usual, by the integral 

F(s) . = [me-st f ( t )  dt; 

i. e., 

f ( -  ) c  Wk iff the set { F ( i w )  I oe ( - o o , o o  I} does not cut the negative r ea l  

1 
k axis f r o m  -00 up to  and including the point -- . 

-7- 

REMARK 1: The statement "g(* ) e  Wklt may be' interpreted via the "principle of 
the argument" to  be equivalent t o  the statement: "The equation G ( s )  = - - has 

no complex roots in Re {s} - > 0. I '  Also the classical  Nyquist Criterion a s su res  

that "g(*)  in  Wkll i s  a necessary and sufficient condition for  feedback system (1) 

t o  be L2-stable f o r  all constant gains between 0 and k; i. e. , for  n(t)  t I where I 
is a constant 0 < I < k. 

k .  
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1. @(u) 2 Arg 
. .  - 

Then since G(iw) t l /k  does not cut the negative rea l  axis as w passes  f rom 
- 00 t o  t 00 , it follows that @ (0) is uniquely defined for all W, and takes values 

only in (-IT, n). Further ,  since g ( * )  c L [0, 0 0 )  the Riemann-Lebesgue Lemma 1 f * 
a s s u r e s  that lim G(io) = 0 and s o  l im  Arg {G(iw) t l / k j =  0 also. There- 

Iwl- IwI- * 
o f o r e  a simple continuity argument shows that the function G(io) + l /k  must have 

a "closest angular approach" 4 , t o  the negative rea l  axis; that is, letting: 

then 2 > 0. 

Next l e t  

n - 2  
3 3,  v = -  

and define the "cutoff frequency" 

H e r e  the existence of W is assured  by an argument employing the continuity of 
U 

Q (0) and the fact that limW Q (u) = 0. 
1 0 1  - e --- 

The importance of W i s  that it represents a frequency value beyond which 
v 

information about the phase function @ (a) need not be utilized in the theory t o  

follow. 

In the remainder of this paper the notation introduced in  (1) through (4) 

above will be used freely. 

The main  result  may now be stated. 



THEOREM 1: 

tions ( 1  through 4) hold for a pa i r  (x(*), e ( - ) ) .  

Suppose Eq. (1) (o r  equivalently Eqs. (2 ) )  and the related assump- 

Let k > 0 be given and assume: 

1. g(* )c Wk (i. e. , the system is L2- stable for n(t) P any P ,  0 5 1 5 k)  

2. 0 < inf n( t )  5 n(t) I sup n(t) < k. Then: 

(a) i f  (w)  I TT 2 for  - m  < w < , the system is L2-stable by a simple 

< 00 implies 

and the desired result follows 

I I /  
possivity argument. (Note that I @ (w) j l s  ~r/2  for  - m  < 

2 - l /k for  - m  < a  < 
f rom the basic Popov theorem). 

On the other hand: 

(b) If @ (a) > 7r/2 for  some w, the "cutoff frequency" W 

tive and one may define 
is  strictly posi- 

V 

. .  

V 

where @ I  (0) denotes the derivative of the phase function @ (a). 

Suppose then that there  exists a constant K > 0 and a constant u in ( 0 ,  u.,) 
or 

such that 
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for  
I 

. .  

11 t > 0 or  e lse  i f  

(4) 

for  all t > 
Therefore  System (1) is L2- stable. 

0. Then e ( -  ) is in  L2[0,m) and, in  fact ,  II e( -  ) I 1  5 const. I I  x(- ) I I .  

0 REMARK 3: Theorem 1 is  an  immediate consequence of Theorem 2, Section 3, 

Lemma 3 and Remark 4, Section 4, and Corollary 3 ,  Section 5. 

COROLLARY 1: Under the assumptions and notation of Theorem 1 a sufficient condi- 

tion on n ( - )  for  ( 3 )  t o  hold, and hence for %-stability, is  that 

for  all t > 0. Similarly the inequality 

is a sufficient condition f o r  (4) t o  hold and s o  a lso to  ensure L2-stability. (See 

R. W. Brockett and L. J. F o r y s  [ 11 for a t 'multipliert '  resul t  along these lines. ) 

PROOF OF COROLLARY 1: Immediate. 

0 
COROLLARY 2: 

except in Case  (b) redefine U* as  follows: 

Let  the hypotheses and notation of Theorem 1 remain valid 

I 
D 
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i Then with this definition of r* the conclusions of the Theorem 1 and a l so  of 

Corollary 1 remain valid; i. e. , System (1) is LZ-stable. 

PROOF OF COROLLARY 2: 

of the original statement. 
This choice of u* i s  l e s s  than or  equal t o  the u* 

c 
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3. A THEOREM ON MULTIPLIERS 

The following theorem is essentially proved in Zames-Freedman 141 and the 

reader  is recommended to that paper f o r  the proof. 

operator ,Z satisfying certain properties with respect to'$ t 

a stability conclusion is then drawn fo r  all time-varying gains n( .  ) suitably r e -  . 
stricted. The result  in the form presented below is rather similar to a result in 

Brockett-Forys [ 11 ; however it differs in one sense in that the form of the multi- 

plier - Z remains unspecified in this paper. 

he re  is that this theorem represents  an intermediate stage in the developments 

leading to Theorem 1 stated in the previous section, and Theorem 1 contains no 

explicit mention of the multiplier. 

The existence of a multiplier 

i s  hypothesized and 
- .  

E 

Moreover, the key fact to keep in mind 

1 
. '1 For  what follows the definition of some special operator spaces (actually they 

a r e  Banach Algebras) will be of use. 

DEFINITION: Let a: be the class  of operators. H: LZe - LZe satisfying - 
, uO 

I 1 
I B (for all x ( . ) E  LZe [O, 00) and all t 2 0) where ho  is a rea l  constant and hl( .)  i s  a 

real-valued measurable function on 0, a ) satisfying hl( t )  exp (uo t )  E L1[O, 00 ). 

F o r  H E 2 the Laplace t ransform of H is given by - U - 
0 

0 0 -  

H ( s )  = ho t h l ( t )  exp ( - s t )d t  
0 I 

I 

(for all complex s with Re 

I 
THEOREM 2: Let Eq. (1) (or equivalently Eqs. (2) )  and the related assumptions 

(1 through 4) hold for  a pair (x(-), e (* ) ) .  Let k > 0 be given and assume 

0 < inf n(t)  5 n(t)  5 sup n( t )  < k. 

-12-  



Further ,  l e t  the following two assumptions be made: 

1. There is a constant u > 0 and an operator Z c 2 satisfying, for a l l  real  w, 
N u  

(i) Re { Z ( i w  - u ) } > O  - 

for some positive constant 6. 

The function n:::(.) defined by ns ( t )  2 n( t ) ( l  - -) for all t 2 0, o r  the 
reciprocal of this function, may be factored into a product n,( .)  . n2(- )  of 

two absolutely continuous functions on [0 ,  m) ;  where n l ( t )  exp (-2ut) i s  

monotone non-increasing while n (t) i s  monotone non-decreasing in t ,  and 

0 

n( t )  -1 2. k 

‘1 
2 

inf n l ( t )  I sup n2(t)  < 06 (and so also 0 < inf n2(t)  1. sup n ( t )  < 00). 
2 

Then the system (1) i s  L2-stable, i. e . ,  

e(*) is in L2 [0, “6) and IIe(*) II const. Ilx(*)Il 

PROOF OF THEOREM 2: 

property (imposed on the time-varying gain) hypothesized in 141 is slightly different 

f r o m  the one made in  this present paper, but the proof under the conditions con- 1 

sidered here  follows the same general arguments and i s ,  in fact, a bit easier .  

that reason the reader  i s  re fe r red  to  [ 4 ] .  

See Lemma 1, Zame-Freedman [4 ] .  The factorization 

For 
I 
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4. MULTIPLIERS WITH PRESCRIBED P H A S E  CHARACTERISTICS 

In this section three  lemmas  will be presented which together sett le the ques- 
- .tion of the existence of a suitable multiplier for Theorem 2. Such a multiplier will be 

seen to  always exist and, in fact, an associated range of u values (as required fo r  

the hypothesis of Theorem 2) may be obtained directly f r o m  data concerning the 

phase of G(iw) t - without recourse to construction of Z in any given case. 1 
k u 

1 The foundation of the resul ts  to  follow in  this section is  Lemma 1 belovr, which 

a s s u r e s  the existence of an operator Z i n 2  with any prescribed phase function 
u U 0 Q o ( o )  = Arg { Z ( i w ) }  provided only the function Q0(o)  and its derivative @d(o) 

satisfy cer ta in  integrability conditions. 

L E M M A  1: (OPERATORS W I T H  PRESCRIBED PHASE) 

If: 

1. Qo (a) is a real-valued continuous a. e. differentiable odd function of w 

for  o in ( - 0 0 ,  0 0 )  

Qo(w!) a n d < ( w )  a r e  in L2 ( - 0 0 ,  ob), 2. 

then 

(a) the re  is a function X ( - )  in  L 1 ( - m ,  0 0 )  with '>i (t) = 0 for  t < 0 and with a 

Laplace t ransform A ( s )  satisfying I~{A (iw)} = ao(w) .  
t h e r e  is a y(.) in L1 (-00, 0 0 )  with y( t )  = 0 for t < 0, and with a 

Laplace t r ans fo rm Y ( S )  satisfying 1 t Y ( S )  = exp [ A  ( s ) ]  for  
(b) 

R e  {s} 1: 0. 

If -n < O o ( o )  < T, t he re  is  a y(*)c L1 (-m, 30) with y(t)  = 0 for  t < 0,  
1 f Y(s) # 0 in  Re {s} 2 0 (so 1 t Y(s) is minimum phase) and 

A r g  {I t Y(iw)} = @ 0 (a). 

( C )  

OUTLINE OF PROOF: 

again r e f e r r e d  to  Zames-Freedman [4].  However a brief outline of the main 

ideas  is presented here .  

F o r  the complete proof of this lemma the reader  is once 
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(i) Let + (t) denote the inverse limit-in-the-mean Fourier  t r ans fo rm of 

Q (w) and define 
0 

0 

2+o(t) for  t L o 
0 for t < 0 

Then it may.be deduced from 1 and 2 that A ( .  ) is  in L ( -@, @ )  and that 

the Laplace t ransform of A ( .  ) denoted A ( s )  satisfies Im{A(iw)} = a0(4 
and so (a) above holds. 

1 

(ii) Next, for each n 2 0, let  

where :? represents  convolution; that is 

Then, for  each n, y ( -  ) is in L [ O , a )  and the Laplace t ransform of n 1 . .  
yn(- ), Y n ( s )  satisfies I 

(iii) Finally it may be shown that yn(- converges in L -norm to a function 1 
y(* ) in  L1[O, a) and the Laplace t r ans fo rm of this function y ( -  ), denoted 

Y ( s ) ,  must  satisfy 

Y ( s )  = exp [A(s ) ]  - 1 f o r  Re { s }  I 0 .  

- 

F r o m  this  fact  (b)  and ( c )  of Lemma 1 follow. 
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In applying Lemma 1 to the problem of constructing a multiplier - Z which will 

meet  the hypotheses of Theorem 2 it i s  clear that the larger  r~ may be chosen (with 
a corresponding Z_ E 2 assured) ,  the less  restrictive will be the conditions on n(*) .  

’A measure  of how large a u i s  possible will be developed via the following lemma. 

This lemma in i t s  face concerns the rate  of convergence of the values of the 

harmonic function Im { h ( s ) }  defined on a half plane Re {s} 2 0 a s  s approaches 

Re { s} = 0 along ordinate lines. 

U 

I 

I 

LEMMA 2: 

it follows that for any u > 0. 

Under the same notation and assumptions a s  in the previous theorem, 

I I 
, and so i f  -T < a0( w) < TT fo r  all w and if the principal value of Arg { } is taken, 

I ’  
I 

00 1 
I 
ff 

PROOF OF LEMMA 2: 
singular integral  theory of Ti tchmarsh 161, Sect 116, pp 28-29). 

(The proof presented here  follows closely the lines of the 

For  all s with . Re { s }? 0 the Laplace t ransform 

h ( s )  4 ,exp (-st) X ( t )  dt 
d 
0 

Now let, for the moment, 

exp (-st) for t >, 0 

q w  = for t < 0. 

( 5 )  
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. Applying 1 
i w  t s So, for any s with Re { s}  > 0 the F o u r i e r  t ransform of q(- ) is  

Parseval ' s  Theorem to (5)  results in 

However, applying Cauchy's Theorem to the analytic function A ( s )  yields 

for  Re s >,O. { I  
- 

A(iG)) - A(iw) as  seen in the previous lemma Now (Po(o) = Im{A(io)} = . 

and so subtracting ( 6 )  f rom (7)  gives: 

2i 

for  Re { s}> 0. 

- 
Next, for convenience of notation, letting s = c i- iy, S = IJ - i Y  

and Irn{A(s)} = V(U,  y) ,  one obtains: 
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and so 

I .  

for u > 0 

or  replacing w by - w  and noting that Q0(o) = - @ ( -w)  gives: 
0' 

for  u > , O  

Next note that for any yc (-00, a) 

1 2dw - -  U 
Y 

U 1 
Tr - 2 '  l T  dm = -  L u2 t (y - w )  

Therefor e : 

Y 

Now fo r  any IJ > 0 and any w and y with w # y: 



Using these relations to  bound (10) resu l t s  in  

The first integral  on the right hand side of (11) satisfies the following chain of 

inequalities : 

1 , 

The second integral  on the right hand side of (11) also satisfies a chain of 

inequalities,. a s  follows: 
1 
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Combining ( l l ) ,  (12) and (13) with (10) one finds that 

1 

1 

Now by a completely analogous procedure, one also has 

Finally (14) and (15) together with (9 )  yield: 

thus completing the proof. 
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B 
il I 

I 
I -  * 

I 
I 

I 
I 
I 
8 
1 
1 

8 
I 
Q 
I 
a 

1,. 

b 

The following lemma completes the lfconstructivell  process for  the Z hypo- 
k 

thesized in  Theorem 2 and also gives a range of applicable u values. 

LEMMA 3: Let the hypotheses and notation of Theorem 1 covering g(*) hold; i. e. , 
g ( * ) c W k ,  @(a) 3 A r g  { G ( i w )  t E }  1 ,cy & rnin(n - . l @ ( a ) l ) >  4 v =  A T - a / 3  and 

W = i n f  { W ,  I I @ ( w ) I  s v f o r  I o 1 2  W} Assume W, > 0 a n d l e t  
V 

Then for  any u in  [O, u::) there  i s  a y ( * )  in  L1[O,m), with Laplace t ransforms Y ( s ) ,  

and a 6 > 0, such that 

(i) Re { 1 t Y ( i w ) }  2 6 > 0 

REMARK 4 If Z E 2 is defined by 
U - . .  

I 

then the  following conditions a r e  equivalent to (i) and (ii) above. 

-21- 
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t Hence condition I of Theorem 2 is satisfied for all u in  (0, ua). 

I 

The hypothesis g ( - ) r  W as su res  that Arg {G(iw) t k }  l i es  in the interval k 
(-IT, TT). 

necessary that Arg (1 t Y ( i o )  lies in ( - -  2" ,;) and also 

Arg { [ 1 t Y ( i o t u ) ]  [G(iw) t l/k } l ies  in ( -  r /2 ,  T T / ~ ) .  That these two conditions 

a r e  a lso sufficient for the validity of (i) and (ii) can be seen f rom the following. 

If conclusions (i) and (ii) above are . to  be fulfilled, then it is clearly 
I 

'I 
I .  

I 

' .!hen there  is a constant 6 > 0 with the property that Re { F(o)} 1 6. 

REMARK 5: If F ( w )  is a continuous complex-valued function on ( -  0 0 ,  ), F ( w )  f 0, 
F ( w )  exists and is a r ea l  contant greater than zero, Arg { F(w)} I< T T / ~  and lim 

bi-* 

1 
Recalling that Arg { [ 1 t Y ( i w t  u)] [G(iw) t E] } = Arg { 1 4- y ( i o t u ) }  t 

Arg {G(iw) t l/k} , an  initial attempt at constructing y(-) might be to employ 

Lemma 1 in order  to find a y( - )eLl (O,a)  with Arg { 1 t Y(iw)} = - Z A r g  {G(iw) t 2). 
With such a choice for y(-), both Arg { 1 t Y(iw) } and Arg { 1 t Y(io )}  t 

Arg  { G(io) t , l / k }  
construction which will be adopted he re  must differ f rom the choice of phase func- 

tion suggested above for  large w in  order to  meet  the conditions required for 

1 

( =  - 1/2 Arg { G ( i w )  t l/k})would l ie in (-sr/2, r / Z ) .  The 

I 

application of L e m a s  1 and 2; namely, that the phase function chosen and its 
derivative must  both have finite square integrals. 

I 
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PROOF OF LEMMA 3: 
tiable r ea l  valued function defined on (W 

F o r  each e > 0 choose le (0) a continuous, a. e., differen- 

00) and satisfying: 
V I  

@ ( W v )  Arg {G(iw)  t T; '} 
2 (a) I c ( W Y )  = - - - 2 - -  

- 

Y ( b ) .  l l c ( w ) l  I 2 for all w e  (W V ,m) 

2 (c)  Im I l e ( w ) (  dw < 00 , and 

V 
W 

(Such functions a r e  easily constructable. In fact, le (a) may be chosen to be 

l inear f rom I 

3w2 V + w V 
w = w to w0(e) = 2 

E 
W 

with 

l e (w)  = 0 for w 2 w (e).  ) 
0 

F o r  any z > 0, define 

for w in [ - w Y ,  w,,] 

for  w > Wv 

- 2 3 -  



By this construction it is a s su red  that 

- .  and 
l@E'(w) t Arg { G(iw) + } I < z .  Tr 

E 

Also for  future reference the inequality 

holds. 

It now follows by application of Lemma 1 that there  i s  a y, ( a )  in L1 (0,m) with 

Laplace t ransform Y ( s ) ,  1 t YE ( iw)  # 0 any w and Arg { 1 t YE ( i w )  } = 
Remark 5 combined with (16) therefore yields: 

(.;I. 

I 

Re { 1 t YE (io) } L 6 ( e )  > 0 

for some constant 6(e). 

y, ( a )  chosen by the above procedure. 

will be  one corresponding to E sufficiently small so as to a s s u r e  that (ii) also holds. 

This proves ( i ) .  In fact (i) holds with y ( - )  equal to  any 

The actual. choice of ye (.) which will be made 

In o r d e r  f o r  (ii) to hold fo r  y(.)  equal to some y (e), it is sufficient, by 
E 

Remark 5, t o  show that 

l A r g  { l t Y c ( i w t u ) }  t @ ( w ) l < :  

Now ( 1  9 )  may be rewrit ten as 

-24- 



From L e m m a  2 it follows that for all w 

and so a sufficient condition for (20)  to hold is that 

Now 

while 

V 3 v  1 1 - c y  
I Z t  v = - -  2 - -  2 

It follows that 

Using this  relation in  conjunction with inequalities (20)  and (21), one finds that a 

sufficient condition for (19) to hold i s  

-25-  
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L -- J 

- o r  

Therefore i f  cr.,. is chosen equal to  
1. 

/w.l @' (a) 1 dw 
-W 

V 

as hypothesized in this lemma, then for any u, 0 < u < uJ, the inequality 
7. 

holds. 

But then if  c is chosen sufficiently small, inequality (23) will hold by virtue of 

This means,  on tracing through the above argument, that the y, ( - )  cor re s -  

e o n d i n g  to  such a choice of Q will be an acceptable choice fo r  the y(-)  in the state- 
(18). 

ment of this lemma; i. e . ,  (i) and (ii) of the statement of this lemma hold for  Y, (s ) ,  

the Laplace t ransform of y, ( e ) .  This completes the proof. 

-26 - 
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5. A FACTORIZATION LEMMA 

In this section a necessary and sufficient condition for the factorization prop- 

e r ty  of n ( * )  as described in Theorem 2 will be derived. 

notation, a c l a s s  %of real-valued functions'is introduced. 

Fo r  convenience of 

DEFINITION: 

k ( - )  defined on [ 0,a ) with each k ( . )  satisfying 0 < inf k ( t )  5 sup k ( t )  < m.  

. Let % b e  the c lass  of absolutely continuous real-valued functions 

LEMMA 4: 

two statements a r e  then equivalent: 

Let k ( . )  E x b e  given and le t  u be a non-negative constant. The following 

(i) There is a constant K > 0 such that 

- 
for all t > 0. 

There a r e  functions k ( - )  and k ( a )  both in  K satisfying the following prop- t - 
er t ies  for all t z  0: 

(ii) 

(a) k( t )  = kt( t )  k (t) 

(b) 
( c )  

k+(t)  exp (-2o-t) is monotone non-increasing 

k - (t) is monotone non-decreasing. 

It is somewhat s impler  to write out the proof of the following equivalent version 

of Lemma 4 (obtained by considering log k(.)) .  

LEMMA 4: 

below) function of t, f o r ' t  in [ O , a ) .  

alent: 

Let I ( . )  be a real-valued absolutely continuous bounded (above and 

Then the following two statements a r e  equiv- 

-27- 



I .  

(i') There is a constant K 

2 ~ t  - K I Jt I l l ( t )  - 
0 

> 0 such that 

2 ~ 1  dt I 20- t  t K 

for  all t L 0. 

(ii') There a r e  two real-valued absolutely continuous bounded (above and below) 

functions It(.) and I (-), defined on [O,m), with the following properties 

(a') I ( . )  = I,(.*) t I ( e )  

I - 
- 

PROOF OF LEMMA 4': Assume at f i r s t  that (i') holds: 
. .  

r + 
2 

A 
Define It(t) = I ( 0 )  t 

0 

A I 

= 1 ( 0 )  t Jt Min {I  (t), 20- 1 dt 
0 

2 r t  Max (I1(t) - 2O-, 0 )  dt. 
.r 
0 

-28- 
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Then with these definitions it is easy  to check that (a'), (b') and ( c ' )  hold. 

What is left to be shown is that P t ( . )  and P ( e )  a r e  bounded functions. - 

But 

while 

Assumption (i') and the fact  that P (t) is bounded a s s u r e  that P 
bounded functions and this completes the proof of ( i t )  

( - )  and P (.) a r e  t - - (ii'). 
. In the 0the.r direction assume (ii') holds. Then it follows that 

dl Jt) A ( l ' ( t )  - 2u) t I P ' ( t )  - 201, 
2 L Max ( P ' ( t )  - 20, 0 )  = dt . 

for a lmost  all t L 0. 

To see  this, note that i f  (25) did not hold, there  would exist  a se t  of positive 

m e a s u r e  on which 

But 
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g 
so that one would have 

I - '  

- dl +(t) 
on some se t  of positive measure.  

on a s e t  of positive measure which would then violate (b').  

This, of course, would imply that 7 > 2u 

Thus (25) is verified. 

Now integrating both sides of (25) from 0 to t yields: 

I valid for all t L 0. 

by assumption (ii'), the estimate 

Noting that both I - ( * )  and ' ( e )  a r e  bounded (above and below) 

follows for  some constant K > 0 and all t 2 0. 

The inequality 

follows easi ly  f r o m  the fact that 

- 30- 



is non-negative fo r  almost all t >_ 

is complete. 

0. With these remarks ,  the proof of (ii') - (i') 

COROLLARY 3: 
2 to hold is that either:  

A necessary and sufficient condition for assumption 2 of Theorem 

(a) there  is a K > 0 such that 

for  all t > o 

o r  else  

(b) there  i s  a K > 0 such that 

1 for all t > 0. 

PROOF: Apply Lemma 4 to  

to  get  (a) or apply Lemma 4 to 

1 - - n.!(t) e (1 - 
k n(t) 

to get (b). 
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CONCLUDING R E M A R K S  

The techniques developed here  show promise of eliminating the "multiplier" 

- dependence f rom many recent stability results.  In particular,  investigations a re  

cu'rrently under way on problems involving monotone non-linearities (See 121) with 

a view towards obtaining geometric criteria there .  
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